

TokuDB®: Scalable High Performance

for MySQL® and MariaDB® Databases

Technology Whitepaper

April 2013

tokutek.com Page 2

Overview

TokuDB for MySQL® & MariaDB® is a high-performance storage engine that

increases MySQL & MariaDB performance and scalability on mixed workloads by one

to two orders of magnitude. Rather than optimizing for a narrow or specialized set

of use cases by re-engineering existing technology, Tokutek introduces a new

Fractal Tree® indexing algorithm, which is based on Cache-Oblivious Algorithmics, a

fundamentally new approach to building memory-efficient systems that was

pioneered by Tokutek.

This whitepaper will:

 Give an overview of B-trees, the indexing method used by today’s conventional

databases

 Outline the performance characteristics of Fractal Tree Indexes and TokuDB

 Describe Tokutek’s advantages in three main areas: Performance, Agility, and

Compression

Brief Database History

A database is a collection of data organized in

such a way that a computer program can

quickly select desired pieces of data.

For the last 40 years, almost all existing

databases index data using the B-tree, a data

structure invented by Rudolf Bayer and Ed

McCreight while working at Boeing Research Labs. The B-tree was developed to

store huge amounts of data for fast retrieval on disk drives. The performance of the

B-tree worked fine with the slow disks from 1970’s era hardware.

"The real end-game for Big Data is to have transactional and

analytic data on the same database." -- David Floyer, Wikibon

B-Tree

http://www.webopedia.com/TERM/P/program.html
http://en.wikipedia.org/wiki/Rudolf_Bayer
http://en.wikipedia.org/wiki/Edward_M._McCreight
http://en.wikipedia.org/wiki/Edward_M._McCreight
http://en.wikipedia.org/wiki/Boeing

tokutek.com Page 3

While they were adequate for sequential workloads, B-trees fail for more

information rich (random) workloads. With the progress in technology in the areas

of processors, computer memory, computer storage, and computer networks, the

sizes, capabilities, and performance of databases have grown by orders of

magnitude. To keep up, over the last two decades, specialty solutions around

online analytical processing (OLAP) and online transaction processing (OLTP)

databases were developed as compromises to get around dated, rigid indexing

technology.

Today’s databases require smarter software algorithms that keep pace with

hardware trends. They require new technology for today’s denser drives and faster

flash technology. Tokutek has developed a new data structure, Fractal Tree

Indexes (FTIs), that perform up to two orders of magnitude faster than B-trees

while requiring less tuning and administration. The user benefits of FTIs include:

unmatched speed, high compression, and exceptional agility.

http://en.wikipedia.org/wiki/Processors
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Computer_networks

tokutek.com Page 4

Fractal Tree Indexes Technology Overview

Indexing is at the foundation of databases. Build a

better foundation, and the whole structure

improves. TokuDB indexes data using Fractal Tree

indexes, a new approach to indexing invented by

Tokutek. Based on a class of algorithms first

introduced in 1999, Fractal Tree Indexes (FTIs) are

designed around the way that hardware has

changed since the B-tree was invented: multi-core

processors and high-bandwidth storage systems.

They outperform B-trees on hard disks (HDs) and on solid-state drives (SSDs), and

they will continue to outpace B-trees with every hardware generation.

This section of the paper explains why Fractal Tree Indexing is superior to B-tree

indexing on both HDs and SSDs. Although the advantages of TokuDB over a B-

tree-based solution like InnoDB seem to be disparate and varied, they are based on

two related ideas: message propagation and I/O buffering.

In MySQL and MariaDB, the indexing algorithm can be upgraded simply by dropping

in a new storage engine since they both support a well-defined storage engine API.

It is the job of the storage engine to keep track of a set of items for insertions,

deletions and updates, while supporting point and range queries. The task is

challenging since large data -- data that is too big to fit in memory -- needs to be

stored on disk.

Message Propagation

In a traditional B-tree index, when an update is made to the index, the index is

changed to reflect this update. When a row is added, the leaf where the row will

end up is modified to add the row. When a row is deleted, the leaf where the row

resides is immediately changed to eliminate the row.

In an FTI, each change is a message. That message makes its way to the leaf, but

the leaf itself is not modified until the message gets there. A message gets injected

into the root of the FTI and it may stay there for some time. As long as the query

“We don’t know how
we could have gotten
to our required scale
and price points for
our meta-directory
components without

TokuDB.”

-- Limelight Networks

tokutek.com Page 5

takes the same path as any message affecting the query, the query will reflect all

relevant changes, even those that have not made it to a leaf.

Consider the most dramatic example: column addition or deletion. In a traditional

B-tree, it is quite tricky to add or remove a column without locking the table. In

InnoDB, this has yet to be achieved. Solutions that change an InnoDB schema

either lock the table for a considerable time or rebuild the table in the background,

so that an added column is not available for some indeterminate amount of time.

In TokuDB, an add column or delete column message can be added to the root

virtually instantly. Once there, it is broadcast to all leaves, and the broadcast

message makes its way down to the leaves just like any other message. The

significance to the user is that a column addition or deletion is almost instantaneous

and does not lock the table. Leaves are rewritten with the new schema only in the

course of normal operation when they would be fetched into memory anyway, but

the schema change takes immediate effect.

Messaging is a powerful tool in databases. Consider the problem of keeping track

of counters on a busy website. InnoDB would need to fetch in leaves to update the

counters. TokuDB simply injects a message at the root that updates the counter.

The difference can be orders of magnitude faster.

I/O Buffering

Every Input/Output (I/O) to disk takes many orders of magnitude more time than

an I/O to main memory and often limits database performance. Hard disks can

only perform 200 or so I/Os per second (IOPS), which can easily become the

bottleneck of a database system. Even SSDs don’t fully address the problem.

Although they perform many more IOPS than hard disks, inefficient I/O can use up

a lot of bandwidth, and it is very costly to build a high-bandwidth storage system

from SSDs. It is therefore critical to database performance to make the most of

each I/O.

The best way to improve the performance of I/Os is to buffer updates. When

updates are buffered, they are saved up so that a group of them can be written

during a single I/O operation. This is not a new idea: buffering approaches to

improving I/O are as old as databases.

tokutek.com Page 6

The difference with TokuDB is that FTIs use provably optimal buffering. That is, it

is possible to how that there is a mathematical minimum amount of I/Os to build

and maintain an index, and FTIs match this provable lower bound. The I/O

shortcomings of B-trees can be somewhat mitigated by buffering, for example by

the InnoDB insertion buffer. These allow B-trees to improve their performance on

certain workloads. However, FTIs incorporate buffering throughout the index,

thereby reducing I/Os and improving bandwidth efficiency for every workload.

Consider the following analogy. Suppose a national distributor had a single point of

distribution but receives orders from all over the country. Suppose that every order

was delivered separately, that is, each order would be placed on a truck by itself for

delivery. The fuel costs of delivery would be very high. This is what unbuffered B-

trees do.

A B-tree with an insertion buffer, like InnoDB, keeps a single warehouse. Items

accumulate for delivery in the warehouse, and when the warehouse is full, the truck

is loaded with some item. If more than one item is going to the same zip code,

then those items are all loaded and delivered. The per-item cost of delivery goes

down, but only by the average load on the truck -- say two to four in a typical

database application. The bigger the warehouse, the luckier we get with repeated

zip codes, but for the scheme to work for a B-tree, the “warehouse” can be no

bigger than RAM.

FTIs use a scheme that is analogous to a network of warehouses. Consider a

system by which there are regional warehouses, then statewide warehouses, and

finally local warehouses. The truck from the central warehouse gets filled with

items going to the same regional warehouse, and when there are enough items

going to the same statewide warehouse, they get loaded onto a truck. The cost of

each trip is split among a large number of items.

Back in the world of databases, the number of I/Os per insertion drops, the

bandwidth efficiency increases, and the speed of updating indexes increases. B-

trees tend to update very little of a leaf at a time, because of their relatively poor

use of buffering. Thus, leaves tend to be small in most implementations. In order

to see why, consider a leaf that holds 100 rows, where one row is modified. When

this leaf gets written, 99% of the bandwidth is wasted because 99 of the 100 rows

were read and now written without modification. If the leaves were bigger –

tokutek.com Page 7

suppose they held 1000 rows – and one row were modified, then 99.9% of the

bandwidth would be wasted. Thus, B-trees tend to have small leaves. Also, they

do a poor job of compressing because compression algorithms do better when they

can compression a bigger chunk of data. FTIs can keep bigger leaves because they

buffer well and update much of a leaf whenever they update a leaf so they use the

bandwidth more efficiently. Additionally, an important side effect of large leaves is

high compression.

Key Benefits of TokuDB for MySQL and MariaDB

TokuDB is designed to be a drop-in replacement storage

engine for MySQL and MariaDB. A software-only plug-in,

TokuDB is ACID- and MVCC-compliant and is fully

compatible with existing MySQL and MariaDB applications.

It requires no modifications to existing code or application

logic.

ACID (atomicity, consistency, isolation, durability)

Compliancy refers to a set of properties that insure reliable

database transactions in these ways:

 Atomicity: applies the principle of the atom (the

smallest indivisible particle) to database transactions so that the queries that

make up the database transaction must either all be carried out or not.

 Consistency: refers to the rules of the data and keeping them consistent

throughout the transaction.

 Isolation: ensures that data being used for one transaction cannot be used by

another transaction until the first transaction is complete

 Durability: once a transaction has completed, its effects should remain and

become irreversible

Multi-Version Concurrency Control (MVCC) Compliancy refers to a technique for

improving multi-user database performance. It does this by eliminating row-level

locking and table locking. This ensures that locks acquired for querying (reading)

File System

MySQL Database

SQL Processing, Query
Optimization…

Application

tokutek.com Page 8

data will not conflict with locks acquired for writing data and so reading never

blocks writing and writing never blocks reading.

Performance, Agility, and Compression

Tokutek offers advantages in three main areas: Performance, Agility, and

Compression.

Performance

With a 10x or more improvement in insertions and

indexing, TokuDB delivers faster, more complex ad

hoc queries in live production systems without the

need to rewrite or tune an application. Offering

high performance even when tables are too large

for memory, TokuDB scales MySQL and MariaDB

far beyond either InnoDB or MyISAM.

Tokutek developed a popular open source

benchmark test called iiBench that measures how

fast a storage engine can insert rows while

maintaining secondary indexes. This is often a critical performance measurement

since maintaining the right indexes will dramatically improve query performance.

Utilizing the iiBench test on a database with one billion rows inserted into a table

while maintaining three multi-column secondary indexes, the TokuDB Fractal Tree

Indexes remained at a steady insertion rate of 17,028 inserts/second whereas

InnoDB dropped to 1,050 inserts/second. That’s a difference of over 16x.

Compression

By leveraging write-optimized compression, TokuDB achieves up to a 90%

reduction in HDD and flash storage requirements, without impacting performance.

“For us, TokuDB
proved to be over
50x faster to add
and update data into
big tables. Adding
1M records took 51
minutes for MyISAM,
but 1 minute for
TokuDB.”

-- University of
Montreal Genomics
Laboratory

tokutek.com Page 9

TokuDB compresses large blocks of data — on the

order of MBs, rather than the 16KB blocks that

InnoDB uses — that is a big part of why TokuDB

offers better compression. In benchmark tests

InnoDB compression proved much lower than

TokuDB because it is forced to work with smaller

block sizes. InnoDB compression is further

hampered by the choice to maintain fixed-size

blocks on disk.

Agility

TokuDB offers agility at scale with Hot Schema Changes. Hot Column

Addition/Deletion/Rename features allow for much larger tables to be created. It

also provides the ability to add, drop, or rename a database column or field quickly

and easily without taking the database offline.

Hot Indexing enables ad hoc queries to run fast

with realtime, optimized index support. It allows

for concurrent operations on the database and the

index. Hot indexing also brings the familiar

Enterprise Database online operations to MySQL

and MariaDB.

Additional Benefits

Providing immunity to database aging

by eliminating the need to rebuild indexes, TokuDB

ensures no more query slowdowns, no more

dump/reload, and no more need for dedicated maintenance windows. In addition,

by utilizing larger, less frequent I/O, TokuDB reduces wear for flash thereby

extending their service life. Finally, with high insertion rates, TokuDB addresses the

common and persistent problem of “slave lag” in which a replication server is

unable to keep up with the query load borne by the master server.

“The impact to our
storage was
dramatic. In our
comparison
benchmarks, we
went from 452GB
with InnoDB to 49GB
with TokuDB”

-- Southwest
Research Institute

“Column additions
in the past were
simply not practical

– taking days to
complete. Now
they can be done in
a matter of seconds
and accomplished in
a non-disruptive
fashion.”

-- Intent Media

http://www.tokutek.com/2010/11/avoiding-fragmentation-with-fractal-trees/
http://www.tokutek.com/2012/09/three-ways-that-fractal-tree-indexes-improve-ssd-for-mysql/
http://www.tokutek.com/resources/benchmark-results/benchmarks-vs-innodb-hdds/#slavelag
http://www.tokutek.com/resources/benchmark-results/benchmarks-vs-innodb-hdds/#slavelag

tokutek.com Page 10

Conclusion

Customer experiences with TokuDB deployed in production continue to provide

compelling evidence of the advantages of Fractal Tree™ based storage over

conventional B-tree based storage. For a wide range of query types, storage sizes,

insertion rates, and workload types that reflect the real world need to

simultaneously store and query, Fractal Tree performance is 10x-50x faster than

conventional B-tree based designs.

About Tokutek, Inc.

Tokutek is a performance engine company that delivers 21st-Century capabilities to

the leading open source data management platforms. Tokutek applies patented

Fractal Tree™ Indexing to increase MySQL performance and MongoDB performance,

decrease database size and minimize downtime. As a result, Tokutek allows you to

build a new class of applications that can handle unprecedented amounts of

incoming data and scale to handle the data of tomorrow. The company is

headquartered in Lexington, MA, and has offices in New York, NY. For more

information, visit Tokutek.com or follow us on Twitter @Tokutek.

http://ctt.marketwire.com/?release=1043070&id=3317047&type=1&url=http%3a%2f%2fwww.tokutek.com%2fproducts%2ftokudb-for-mysql%2f
http://ctt.marketwire.com/?release=1043070&id=3317050&type=1&url=http%3a%2f%2fwww.tokutek.com%2fproducts%2ftokumx-for-mongodb%2f
http://ctt.marketwire.com/?release=1043070&id=3317053&type=1&url=http%3a%2f%2ftwitter.com%2ftokutek

tokutek.com Page 11

About MySQL  

MySQL is the most popular open source database software in the world. Many of

the world's largest and fastest-growing organizations use MySQL to save time and

money powering their high-volume websites, critical business systems,

communications networks, and commercial software. MySQL is owned by Oracle,

the world's largest business software company. For more information, visit

http://oracle.com.

About MariaDB  

MariaDB strives to be the logical choice for database professionals looking for a

robust, scalable, and reliable RDBMS (Relational Database Management System).

MariaDB can be deployed as a drop-in replacement for the popular MySQL database

and it is built by the original MySQL architects and most of the original core

developers of MySQL with assistance from the broader community of Free and open

source software developers. In addition to the core functionality of MySQL, MariaDB

offers a rich set of feature enhancements including alternate storage engines,

server optimizations, and security and performance patches. For more information

on MariaDB visit http://mariadb.org and http://kb.askmonty.org.

© 2013 Tokutek, Inc. All rights reserved. MySQL is a registered trademark of MySQL AB in the

United States, the European Union and other countries. InnoDB is a registered trademark of Oracle

Corporation. All other company, brand and product names contained herein may be trademarks or

registered trademarks of their respective holders.

http://ctt.marketwire.com/?release=1004996&id=2834986&type=1&url=http%3a%2f%2fmariadb.org%2f
http://ctt.marketwire.com/?release=1004996&id=2834989&type=1&url=http%3a%2f%2fkb.askmonty.org%2f

